Regression of chronic hypoxic pulmonary hypertension by simvastatin.
نویسندگان
چکیده
The 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitor, simvastatin, has been shown to attenuate chronic hypoxic pulmonary hypertension (CHPH). Here, we assess whether simvastatin is capable of inducing regression of established CHPH and explore potential mechanisms of statin effect. Rats (n = 8 in each group) were exposed to chronic hypoxia (10% Fi(O(2))) for 2 or 4 wk. Simvastatin treatment (20 mg.kg(-1).day(-1)) commenced after 2 wk of hypoxia, at which time CHPH was fully established, reduced mean pulmonary artery pressure (19 +/- 0.5 vs. 27 +/- 0.9 mmHg; P < 0.001), the ratio of right ventricular free wall to left ventricular plus septal weight (0.41 +/- 0.03 vs. 0.54 +/- 0.03; P < 0.001), and medial thickening of small pulmonary arteries (13 +/- 0.4 vs. 16 +/- 0.4%; P < 0.01) compared with 4-wk hypoxic controls. Supplementation with mevalonate (50 mg.kg(-1).day(-1)) prevented the attenuation of CHPH induced by simvastatin during 2 wk of hypoxia. Because statins are known to inhibit Rho-kinase (ROCK), we determined expression of ROCK-1 and -2 in whole lung by Western blot and ROCK activity by phosphorylation of the myosin-binding subunit of myosin phosphatase. Expression of both ROCK-1 and -2 were markedly diminished in simvastatin-treated animals during normoxia and hypoxia (2- and 4-wk) exposure (P < 0.01). ROCK activity was increased threefold under hypoxic conditions and normalized with simvastatin treatment (P < 0.001). We conclude that simvastatin attenuates and induces regression of established CHPH through inhibition of HMG-CoA reductase. Inhibition of ROCK expression and activity may be an important mechanism of statin effect.
منابع مشابه
Attenuation of chronic hypoxic pulmonary hypertension by simvastatin.
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve multiple normal endothelial cell functions and inhibit vascular wall cell proliferation. We hypothesized that one such agent, simvastatin, would attenuate chronic hypoxic pulmonary hypertension. Male adult Sprague-Dawley rats were exposed (14 days) to normoxia (N), normoxia plus once-a-day admini...
متن کاملHypercapnia attenuates hypoxic pulmonary hypertension by inhibiting lung radical injury.
Chronic lung hypoxia results in hypoxic pulmonary hypertension. Concomitant chronic hypercapnia partly inhibits the effect of hypoxia on pulmonary vasculature. Adult male rats exposed to 3 weeks hypoxia (Fi(02)=0.1) combined with hypercapnia (Fi(C02)=0.04-0.05) had lower pulmonary arterial blood pressure, increased weight of the right heart ventricle, and less pronounced structural remodeling o...
متن کاملGlobal gene annotation analysis and transcriptional profiling identify key biological modules in hypoxic pulmonary hypertension.
Chronic hypoxic pulmonary hypertension is an important clinical disorder causing significant morbidity. Despite recent discoveries, many molecular mechanisms involved in its pathogenesis remain unexplored. We have undertaken a systematic and unbiased approach to gain global insights into this complex process. By combining transcriptional profiling with rigorous statistical methods and cluster a...
متن کاملHypoxic pulmonary hypertension: the paradigm is changing
Sustained hypoxia caused by migration of native sea-level dwellers to high altitude or by chronic lung disease leads to the development of increased pulmonary vascular resistance and pulmonary hypertension, a response to hypoxia that is unique to the pulmonary circulation. In susceptible individuals at high altitude (subacute and chronic mountain sickness) and in lung disease, the resultant pul...
متن کاملJAP-01337-2004 R.1 Thromboxane inhibition reduces an early stage of chronic hypoxia-induced pulmonary hypertension in piglets
The pulmonary vasoconstrictor, thromboxane, may contribute to the development of pulmonary hypertension. Our objective was to determine if a combined thromboxane synthase inhibitor/receptor antagonist, terbogrel, prevents pulmonary hypertension and the development of aberrant pulmonary arterial responses in newborn piglets exposed to 3 days hypoxia. Piglets were maintained in room air (control)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 292 5 شماره
صفحات -
تاریخ انتشار 2007